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Wald’s Identity

We begin with Wald’s equations, which constitute the cornerstone of the
theory of sequential analysis.

Theorem (Wald, 1944 [5])
Let Xi be a sequence of i.i.d. random variables adapted to
Fi = σ(X1, ..., Xi), with E(X ) = µ, |µ|< ∞. Let T be a stopping time
adapted to σ(Xi). Set Sn = X1, +... + Xn. Then

E(ST ) = µE(T ), whenever E(T ) < ∞ (1)

Moreover, if E(X1) = 0, and E(X1
2) < ∞, then

E(S2
T ) = E(X1

2)E(T ), whenever E(T ) < ∞. (2)
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In this context, although the stopping time T is adapted to
F := {Fi}i≥1 := {σ(X1, ..., Xi)}i≥1, we can decouple this structure and
still keep the identity, the proof of which is even simpler than the Wald
identity.

Theorem
Let Xi be a sequence of independent random variables adapted to
Fi = σ(X1, ..., Xi), with E(Xi) = µi , |µi |< ∞ for all i . Let T be a
stopping time adapted to F. Let {X̃i} be the i.i.d. copy of {Xi}, and be
independent of T . Set Sn = X1, +... + Xn, and S̃n = X̃1, +... + X̃n. Then

E(ST ) = E(S̃T ), whenever E(T ) < ∞ (3)

Moreover, if E(Xi) = 0, and E(X1
2) < ∞, then

E(S2
T ) = E(S̃2

T ), whenever E(T ) < ∞. (4)
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Bounding ES2
T via ES̃2

T

We now consider the second moment of ST , where Xi ’s are
square-integrable but may not be mean-zero. Although the equation (4)
for the mean-zero random variables no longer holds, we may still use the
second moment of S̃T to bound ES2

T . In the following discussion, we
presume that Xi ’s are independent (but may not be identically distributed)
and square-integrable, and ET < ∞.

Remark: We note that S̃T has the same distribution of ST̃ , where T̃ is an
independent copy of T .
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Lemma
Let EXi = µi and Var(Xi) = σ2

i , and let T̃ an independent copy of T .
Then

ES2
T̃ = E

T̃∑
i=1

σ2
i + E

 T̃∑
i=1

µi

2

= E
T∑

i=1
σ2

i + E
( T∑

i=1
µi

)2

. (5)

ES2
T̃ = E

 T̃∑
i=1

(Xi − µi) +
T̃∑

i=1
µi

2

= E

 T̃∑
i=1

(Xi − µi)

2

+ 2E

 T̃∑
i=1

(Xi − µi)

 T̃∑
i=1

µi

+ E

 T̃∑
i=1

µi

2

= E
T̃∑

i=1
σ2

i + E

 T̃∑
i=1

µi

2

,

where we establish the last equation by conditioning T̃ , and (5) holds due
to (3) and (4).
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Lemma

E
( T∑

i=1
µi

)2

= ES2
T + E

( T∑
i=1

(Xi − µi)
)2

− 2E
(

ST

T∑
i=1

(Xi − µi)
)

≤

√ES2
T +

√√√√E
T∑

i=1
σ2

i

2

, (6)

ES2
T = E

( T∑
i=1

µi

)2

+ E
( T∑

i=1
(Xi − µi)

)2

− 2E
( T∑

i=1
µi

T∑
i=1

(Xi − µi)
)

≤


√√√√√E

( T∑
i=1

µi

)2

+

√√√√E
T∑

i=1
σ2

i


2

. (7)

Both first equations are obtained directly from∑T
i=1 µi = ST −

∑T
i=1(Xi − µi), and both second inequalities are due to

the Cauchy-Schwarz inequality and completing the square.
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From the inequality (7) and equation (5), we have that

ES2
T ≤


√√√√√E

( T∑
i=1

µi

)2

+

√√√√E
T∑

i=1
σ2

i


2

≤ 2

E( T∑
i=1

µi

)2

+ E
T∑

i=1
σ2

i

 = 2ES2
T̃ .

Note that ST̃ and S̃T have the same distributions, the following inequality
is induced.

Theorem (de la Peña & Govindarajulu [4])
0 ≤ ES2

T ≤ 2ES̃2
T . (8)
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In addition, since almost surely
∑T

i=1 EX 2
i ≥

∑T
i=1 σ2

i ,

E
T∑

i=1
X 2

i =
∞∑

i=1
E(X 2

i IT≥i) =
∞∑

i=1
[E(X 2

i )EIT≥i ]

= E[(
∞∑

i=1
E(X 2

i )IT≥i ] = E
T∑

i=1
EX 2

i .

When all Xi ’s are non-negative, we have ES2
T ≥ E

∑T
i=1 X 2

i ≥ E
∑T

i=1 σ2
i .

Then from (6) we have

E
( T∑

i=1
µi

)2

≤

√ES2
T +

√√√√E
T∑

i=1
σ2

i

2

≤ 4ES2
T . (9)
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Therefore, we have

ES2
T̃ = E

( T∑
i=1

µi

)2

+ E
T∑

i=1
σ2

i ≤ 5ES2
T ,

which leads to the following theorem.

Theorem (de la Peña & Govindarajulu [4])
With the same assumption above, we further suppose that for all
i = 1, ..., n, Xi ≥ 0 almost surely, then

ES2
T ≥ 1

5ES2
T̃ . (10)
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We further note that the bounds 0 ≤ ES2
T ≤ 2ES̃2

T is sharp, from the
following example, provided by Aryeh Dvoretzky.
Let Y1, Y2, ... be i.i.d. random variables with

Y1 =


1, w .p.

1
n

−1
n − 1 , w .p.

n − 1
n

Then EY1 = 0 and EY 2
1 = (n − 1)−1. Let the stopping time

Tn =
{

1, if Y1 < 0
kn, if Y1 > 0

,

for some kn such that kn/n → 0 and k2
n/n → ∞ when n → ∞.

In this case, marginally, when n → ∞, ETn = 1 − n−1 + kn
n → 1, and

ET 2
n = 1 − n−1 + k2

n
n ∼ k2

n
n .

de la Peña Randomly Stopped Sums AI4OPT Atlanta 2024 10 / 16



Setting some constant a ∈ R and we then have

E

 Tn∑
i=1

(a + Yi)

2

= a2ET 2
n + 2aE[Tn

Tn∑
i=1

Yi ] + E[
Tn∑
i=1

Yi ]2

∼ a2 k2
n
n + 2akn

n + 1
n .

When we let a = 1
kn

, E
(∑Tn

i=1(a + Yi)
)2

∼ 4
n . And when a = −1

kn
,

E
(∑Tn

i=1(a + Yi)
)2

= o(n−1). By comparison, for the i.i.d. copy T̃n of
Tn, we also have when a = ± 1

kn

E

 T̃n∑
i=1

(a + Yi)

2

= ET̃nEY 2
1 + a2ET̃ 2

n ∼ 1
n + a2k2

n
n ∼ 2

n .

Hence, both the upper bound and the lower bound are sharp.
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Application

Consider the hitting time Tr := inf{n : S2
n ≥ r} for some nonnegative r ,

and the function a : N0 → R+
0 induced by Sn such that

a(n) := E
[

max
0≤j≤n

S2
j

]
, ∀n ∈ N0.

Then we can lower bound the expectation of the random variable a(Tr ),
via the following procedure

r ≤ E[S2
Tr ] ≤ 2E[S̃2

Tr ] ≤ 2E
[

max
0≤j≤Tr

S̃2
j

]
⇐⇒ E[a(Tr )] ≥ r/2.
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Remark: This result can be extended to the case for all nonnegative,
measurable process Xt with a(t) = E sup

0≤s≤t
Xs and Tr := inf{t : Xt ≥ r},

such that r/2 ≤ E[a(Tr )] (see Brown, de la Peña & Sit [1]).
If a(t) is assumed to be concave, we obtain that

a−1(r/2) ≤ E[Tr ]. (11)

If a(·) is continuous and strictly increasing, there is a sharp inequality for
any Cadlag stochastic process, Xt with X0 = 0 and g(·) non-decreasing
(see Brown, de la Peña, Klass & Sit [2])

Eg(Tr ) ≥
∫ 1

0
g
(
a−1(rα)

)
dα. (12)
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Extension

Hitczenko [3] extended the inequality to p-th moment.

Theorem
With the same assumptions above, we further assume that for all
i = 1, 2..., Xi ≥ 0 almost surely, then for all 1 ≤ p < ∞,

ESp
T ≤ 2p−1ES̃p

T . (13)

Remark 1: This bound is proved to be sharp.
Remark 2: This bound is established through a more general result in
tangent decoupling.
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